Emergence of chaotic behaviour in linearly stable systems
نویسنده
چکیده
Strong nonlinear effects combined with diffusive coupling may give rise to unpredictable evolution in spatially extended deterministic dynamical systems even in the presence of a fully negative spectrum of Lyapunov exponents. This regime, denoted as “stable chaos”, has been so far mainly characterized by numerical studies. In this manuscript we investigate the mechanisms that are at the basis of this form of unpredictable evolution generated by a nonlinear information flow through the boundaries. In order to clarify how linear stability can coexist with nonlinear instability, we construct a suitable stochastic model. In the absence of spatial coupling, the model does not reveal the existence of any self-sustained chaotic phase. Nevertheless, already this simple regime reveals peculiar differences between the behaviour of finite-size and that of infinitesimal perturbations. A mean-field analysis of the truly spatially extended case clarifies that the onset of chaotic behaviour can be traced back to the diffusion process that tends to shift the growth rate of finite perturbations from the quenched to the annealed average. The possible characterization of the transition as the onset of directed percolation is also briefly discussed as well as the connections with a synchronization transition. PACS numbers: 05.45+b Dipartimento di Fisica, Università di Firenze and Istituto Nazionale di Fisica della Materia, Unità di Firenze Dipartimento di Fisica, Università di Firenze and Istituto Nazionale di Fisica della Materia, Unità di Firenze Istituto Nazionale di Ottica Applicata and Istituto Nazionale di Fisica della Materia, Unità di Firenze
منابع مشابه
Investigation and Control of Unstable Chaotic Behavior Using of Chaos Theory in Two Electrical Power Systems: 1-Buck Converter2- Power Transformer
This paper consist of two sections: control and stabilizing approach for chaotic behaviour of converter is introduced in first section of this paper for the removal of harmonic caused by the chaotic behaviour in current converter. For this work, a Time- Delayed Feedback Controller (TDFC) control method for stability chaotic behaviour of buck converter for switching courses in current control mo...
متن کاملCONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملStable chaos
Stable chaos is a generalization of the chaotic behaviour exhibited by cellular automata to continuous-variable systems and it owes its name to an underlying irregular and yet linearly stable dynamics. In this review we discuss analogies and differences with the usual deterministic chaos and introduce several tools for its characterization. Some examples of transitions from ordered behavior to ...
متن کاملGlobal Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control
In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کامل